MARETONG: Soal dan Pembahasan Matriks

Friday, June 14, 2019

Soal dan Pembahasan Matriks

Soal dan Pembahasan Matriks Materi SMA kelas 11 Matematika Wajib. Pembahasan lebih difokuskan terhadap soal-soal UN/UNBK, SBMPTN, SIMAK UI, dan UM UGM. Sebelum kita lanjut ke topik utama sebaiknya adik-adik jangan lupa untuk memahami terlebih dahulu materi tentang Pengertian Matriks. Pengertian tentang matriks adalah dasar untuk memahami soal-soal yang akan kita bahas. Setelah adik-adik mengerti tentang dasar-dasar matriks, adik-adik bisa lanjutkan materi tentang Penjumlahan dan Pengurangan Matriks dan kemudian lanjutkan mempelajari materi tentang Perkalian dan Perpangkatan Matriks. Topik yang tidak kalah penting lainnya adalah Determinan dan Invers Matriks. Mungkin masih ada materi-materi yang lain yang berhubungan dengan matriks yang belum disebutkan di atas, nanti adik-adik bisa lihat pada pembahasan soal-soal di bawah. Jika adik-adik sudah siap, kita akan lanjutkan ke topik utama yaitu Soal dan Pembahasan matriks.

Soal dan Pembahasan Matriks
$1.$ Diketahui matriks $A = \begin{pmatrix}2 & 3\\1 & 2\end{pmatrix}$ dan matriks $B = \begin{pmatrix}1 & 2\\-1 & 1\end{pmatrix},$ $Matriks\ (AB)^{-1}\ adalah$ . . . .
$A.\ \dfrac13\begin{pmatrix}-1 & 7\\1 & 4\end{pmatrix}$
$B.\ \dfrac13\begin{pmatrix}-1 & -7\\1 & 7\end{pmatrix}$
$C.\ \dfrac13\begin{pmatrix}4 & -7\\1 & -1\end{pmatrix}$
$D.\ \dfrac13\begin{pmatrix}2 & 3\\-1 & 2\end{pmatrix}$
$E.\ \dfrac13\begin{pmatrix}-8 & -1\\-5 & 1\end{pmatrix}$
[Soal UNBK Matematika IPA 2018]

$AB = \begin{pmatrix}2 & 3\\1 & 2\end{pmatrix}\begin{pmatrix}1 & 2\\-1 & 1\end{pmatrix}$
$= \begin{pmatrix}2.1 + 3.(-1) & 2.2 + 3.1\\1.1 + 2.(-1) & 1.2 + 2.1\end{pmatrix}$
$= \begin{pmatrix}-1 & 7\\-1 & 4\end{pmatrix}$
$(AB)^{-1} = \dfrac{1}{-4 - (-7)}\begin{pmatrix}4 & -7\\1 & -1\end{pmatrix}$
$= \dfrac13\begin{pmatrix}4 & -7\\1 & -1\end{pmatrix}$
$Jawab:\ C.$

$2.$ Jumlah umur kakak dan dua kali umur adik adalah 27 tahun. Selisih umur kakak dan umur adik adalah 3 tahun. Jika umur kakak $x$ tahun dan umur adik $y$ tahun, persamaan matriks yang sesuai dengan permasalahan tersebut adalah . . . .
$A.\ \begin{pmatrix}x \\ y\end{pmatrix} = \begin{pmatrix}2 & 1 \\ 1 & -1\end{pmatrix}\begin{pmatrix}9 \\ 1\end{pmatrix}$
$B.\ \begin{pmatrix}x \\ y\end{pmatrix} = \begin{pmatrix}2 & -\\ 1 & 1\end{pmatrix}\begin{pmatrix}9 \\ 1\end{pmatrix}$
$C.\ \begin{pmatrix}x \\ y\end{pmatrix} = \begin{pmatrix}1 & 2 \\ 1 & -1\end{pmatrix}\begin{pmatrix}9 \\ 1\end{pmatrix}$
$D.\ \begin{pmatrix}x \\ y\end{pmatrix} = \begin{pmatrix}-1 & 2 \\ 1 & 1\end{pmatrix}\begin{pmatrix}9 \\ 1\end{pmatrix}$
$E.\ \begin{pmatrix}x \\ y\end{pmatrix} = \begin{pmatrix}1 & -2 \\ 1 & -1\end{pmatrix}\begin{pmatrix}9 \\ 1\end{pmatrix}$
[Soal UNBK Matematika IPA 2018]

$\bullet$ Jumlah umur kakak dan dua kali umur adik adalah 27 tahun
$x + 2y = 27$
$\bullet$ Selisih umur kakak dan umur adik adalah 3 tahun
$x - y = 3$
Ubah persamaan ke dalam bentuk matriks
$\begin{pmatrix}1 & 2 \\ 1 & -1\end{pmatrix}\begin{pmatrix}x \\ y\end{pmatrix} = \begin{pmatrix}27 \\ 3\end{pmatrix}$
$Ingat\ !$
$Jika\ AX = B\ maka\ X = A^{-1}B$
$\begin{pmatrix}x \\ y\end{pmatrix} = \dfrac{1}{-1-2}\begin{pmatrix}-1 & -2 \\ -1 & 1\end{pmatrix}\begin{pmatrix}27 \\ 3\end{pmatrix}$
$\begin{pmatrix}x \\ y\end{pmatrix} = -\dfrac{1}{3}\begin{pmatrix}-1 & -2 \\ -1 & 1\end{pmatrix}\begin{pmatrix}27 \\ 3\end{pmatrix}$
$\begin{pmatrix}x \\ y\end{pmatrix} = -\begin{pmatrix}-1 & -2 \\ -1 & 1\end{pmatrix}\dfrac13\begin{pmatrix}27 \\ 3\end{pmatrix}$
$\begin{pmatrix}x \\ y\end{pmatrix} = \begin{pmatrix}1 & 2 \\ 1 & -1\end{pmatrix}\begin{pmatrix}9 \\ 1\end{pmatrix}$
$Jawab:\ C.$

$3.$ Diketahui matriks $A = \begin{pmatrix}a & b \\ 0 & 1\end{pmatrix}$, $B = \begin{pmatrix}6 & 1 \\ -8 & 7\end{pmatrix},$
$C = \begin{pmatrix}2 & -2 \\ 1 & c\end{pmatrix}$, $D = \begin{pmatrix}1 & -1 \\ 0 & 2\end{pmatrix}$. Jika $2A + B^{T} = CD$ dan $B^{T}$ = transpose B, nilai dari $a + b - c =$ . . . .
$A.\ -8$
$B.\ -6$
$C.\ -4$
$D.\ 6$
$E.\ 8$
[Soal UNBK Matematika IPS 2018]

Soal ini adalah soal kombinasi yaitu perkalian skalar dengan matriks, transpose matriks, perkalian antar matriks, dan persamaan matriks
$2\begin{pmatrix}a & b \\ 0 & 1\end{pmatrix} + \begin{pmatrix}6 & -8 \\ 1 & 7\end{pmatrix} = \begin{pmatrix}2 & -2 \\ 1 & c\end{pmatrix}\begin{pmatrix}1 & -1 \\ 0 & 2\end{pmatrix}$
$\begin{pmatrix}2a + 6 & 2b - 8 \\ 1 & 9\end{pmatrix} = \begin{pmatrix}2 & -6 \\ 1 & 2c - 1\end{pmatrix}$
Dengan persamaan matriks:
Elemen-elemen yang seletak bernilai sama.
$2a + 6 = 2$
$2a = -4$
$a = -2$

$2b - 8 = -6$
$2b = 2$
$b = 1$

$9 = 2c - 1$
$10 = 2c$
$c = 5$

$a + b + c = -2 + 1 - 5 = -6$
$Jawab:\ B.$

$4.$ Diketahui matriks $A = \begin{pmatrix}1 & -2 \\ -1 & 3\end{pmatrix}$ dan matriks $B = \begin{pmatrix}2 & 1 \\ -1 & -1\end{pmatrix}$. Invers dari matriks $AB$ adalah . . . .
$A.\ \begin{pmatrix}4 & -3 \\ 5 & -4\end{pmatrix}$
$B.\ \begin{pmatrix}-4 & -3 \\ 5 & 4\end{pmatrix}$
$C.\ \begin{pmatrix}4 & 3\\ -5 & -4\end{pmatrix}$
$D.\ \begin{pmatrix}-4 & 3 \\ -5 & 4\end{pmatrix}$
$E.\ \begin{pmatrix}4 & 3 \\ 5 & -4\end{pmatrix}$
[Soal UNBK Matematika IPS 2018]

$AB = \begin{pmatrix}1 & -2 \\ -1 & 3\end{pmatrix}\begin{pmatrix}2 & 1 \\ -1 & -1\end{pmatrix}$
$= \begin{pmatrix}1.2 + (-2).(-1) & 1.1 + (-2).(-1) \\ (-1).2 + 3.(-1) & -1.1 + 3.(-1)\end{pmatrix}$
$= \begin{pmatrix}4 & 3 \\ -5 & -4\end{pmatrix}$

$(AB)^{-1} = \dfrac{1}{-16 - (-15)}\begin{pmatrix}-4 & -3 \\ 5 & 4\end{pmatrix}$
$= -1\begin{pmatrix}-4 & -3 \\ 5 & 4\end{pmatrix}$
$= \begin{pmatrix}4 & 3 \\ -5 & -4\end{pmatrix}$
$Jawab:\ C.$

$5.$ Nilai $2x - y$ dari persamaan matriks
$\begin{pmatrix}5 & 3x \\ y - 1 & 2\end{pmatrix} - \begin{pmatrix}7 & 1 - 2y \\ 2x & 6\end{pmatrix}$ $ = \begin{pmatrix}6 & 2 \\ -4 & 8\end{pmatrix}\begin{pmatrix}0 & 3 \\ -1 & 1\end{pmatrix}$ adalah . . . .
$A.\ -7$
$B.\ -1$
$C.\ 1$
$D.\ 7$
$E.\ 8$
[Soal UNBK Matematika IPA 2017]

$\begin{pmatrix}-2 & 3x + 2y - 1 \\ y - 2x - 1 & -4\end{pmatrix} = \begin{pmatrix}-2 & 20 \\ -8 & -4\end{pmatrix}$
$3x + 2y - 1 = 20$
$3x + 2y = 21$ . . . . *
$y - 2x - 1 = -8$
$-2x + y = -7$ . . . . **
Eliminasi persamaan * dan **
$3x + 2y = 21$
$-4x + 2y = -14$
-------------------------- -
$7x = 35$
$x = 5$
Substitusi $x = 5$ ke dalam persamaan *
$3.5 + 2y = 21$
$15 + 2y = 21$
$2y = 21 - 15$
$2y = 6$
$y = 3$

$2x - y = 2.5 - 3 = 10 - 3 = 7$
$Jawab:\ D.$

$6.$ Diketahui matriks $K = \begin{pmatrix}k & l \\ m & n\end{pmatrix}$, $A = \begin{pmatrix}2 \\ 0 \end{pmatrix}$, $B = \begin{pmatrix}8 \\ -2\end{pmatrix},$
$C = \begin{pmatrix}1 \\ 1\end{pmatrix}$, dan $D = \begin{pmatrix}6 \\ 2\end{pmatrix}$.
Jika $KA = B$, $KC = D$, nilai dari $K\begin{pmatrix}-2 \\ 1\end{pmatrix}$ adalah . . . .
$A.\ \begin{pmatrix}-6 \\ 5\end{pmatrix}$
$B.\ \begin{pmatrix}5 \\ -4\end{pmatrix}$
$C.\ \begin{pmatrix}6 \\ -5\end{pmatrix}$
$D.\ \begin{pmatrix}12 \\ -5\end{pmatrix}$
$E.\ \begin{pmatrix}-14 \\ 7\end{pmatrix}$
[Soal UNBK Matematika IPA 2017]

$KA = B$
$\begin{pmatrix}k & l \\ m & n\end{pmatrix}\begin{pmatrix}2 \\ 0 \end{pmatrix} = \begin{pmatrix}8 \\ -2\end{pmatrix}$
$\begin{pmatrix}2k \\ 2m\end{pmatrix} = \begin{pmatrix}8 \\ -2\end{pmatrix}$
$2k = 8$
$k = 4$
$2m = -2$
$m = -1$

$KC = D$
$\begin{pmatrix}k & l \\ m & n\end{pmatrix}\begin{pmatrix}1 \\ 1\end{pmatrix} = \begin{pmatrix}6 \\ 2\end{pmatrix}$
$\begin{pmatrix}k + l \\ m + n\end{pmatrix} = \begin{pmatrix}6 \\ 2\end{pmatrix}$
$k + l = 6$
$4 + l = 6$
$l = 2$
$m + n = 2$
$-1 + n = 2$
$n = 3$
Berarti matriks $K = \begin{pmatrix}4 & 2 \\ -1 & 3\end{pmatrix}$
$K\begin{pmatrix}-2 \\ 1\end{pmatrix} = \begin{pmatrix}4 & 2 \\ -1 & 3\end{pmatrix}\begin{pmatrix}-2 \\ 1\end{pmatrix} = \begin{pmatrix}-6 \\ 5\end{pmatrix}$
$Jawab:\ A.$

$7.$ Ibu Giat dan Ibu Prestasi berbelanja di toko Bahagia. Ibu Giat membeli 2 kg gula dan 3 kg beras, dan ia harus membayar Rp64.000,00. Sedangkan Ibu Prestasi membeli 5 kg gula dan 4 kg beras, dan ia harus membayar Rp118.000,00. Toko Bahagia menjual gula dengan harga $x$ rupiah tiap kilo dan beras dengan harga $y$ rupiah tiap kilo. Permasalahan tersebut dapat ditampilkan dalam bentuk permasalahan matriks . . . .
$A.\ \begin{pmatrix}2 & 3 \\ 5 & 4\end{pmatrix}\begin{pmatrix}x & y\end{pmatrix} = \begin{pmatrix}64.000 \\ 118.000 \end{pmatrix}$
$B.\ \begin{pmatrix}2 & 3 \\ 5 & 4\end{pmatrix}\begin{pmatrix}x & y\end{pmatrix} = \begin{pmatrix}64.000 & 118.000 \end{pmatrix}$
$C.\ \begin{pmatrix}2 & 3 \\ 5 & 4\end{pmatrix}\begin{pmatrix}x \\ y\end{pmatrix} = \begin{pmatrix}64.000 \\ 118.000 \end{pmatrix}$
$D.\ \begin{pmatrix}2 & 5 \\ 3 & 4\end{pmatrix}\begin{pmatrix}x & y\end{pmatrix} = \begin{pmatrix}64.000 \\ 118.000 \end{pmatrix}$
$E.\ \begin{pmatrix}2 & 5 \\ 3 & 4\end{pmatrix}\begin{pmatrix}x \\ y\end{pmatrix} = \begin{pmatrix}64.000 \\ 118.000 \end{pmatrix}$
[Soal UNBK Matematika IPS 2017]

$\bullet$ 2 kg gula dan 3 kg beras dibayar Rp64.000,00
$2x + 3y = 64.000$
$\bullet$ 5 kg gula dan 4 kg beras dibayar Rp118.000,00
$5x + 4y = 118.000$
Ubah ke dalam bentuk matriks
$\begin{pmatrix}2 & 3 \\ 5 & 4\end{pmatrix}\begin{pmatrix}x \\ y\end{pmatrix} = \begin{pmatrix}64.000 \\ 118.000 \end{pmatrix}$
$Jawab:\ C.$

$8.$ Diketahui matriks $L = \begin{pmatrix}1 & 3 \\ 4 & -1\end{pmatrix}$ dan $M = \begin{pmatrix}5 & 2 \\ 7 & -2\end{pmatrix}.$
Determinan $L\ \times\ M$ adalah . . . .
$A.\ -312$
$B.\ -37$
$C.\ 37$
$D.\ 137$
$E.\ 312$
[Soal UNBK Matematika IPS 2017]

$|L| = 1.(-1) - 3.4 = -13$
$|M| = 5.(-2) - 2.7 = -24$
$|L\ \times\ M| = |L|.|M|$
$= (-13).(-24) = 312$
$Jawab:\ E.$

$9.$ Diketahui matriks $A = \begin{pmatrix}2 & -y \\ 2x & -1\end{pmatrix}$, $B = \begin{pmatrix}6 & -3y \\ 12x & 1\end{pmatrix}$
dan $C = \begin{pmatrix}z & 8 \\ 1 & -5\end{pmatrix}$. Jika $4A - B = C^{T}$ dan $C^T$ adalah transpose matriks C, maka $2x + y + z$ adalah. . . .
$A.\ -7$
$B.\ -3$
$C.\ -1$
$D.\ 1$
$E.\ 3$
[Soal UNBK Matematika IPS 2017]

$4A - B = C^{T}$
$\begin{pmatrix}8 & -4y \\ 8x & -4\end{pmatrix} - \begin{pmatrix}6 & -3y \\ 12x & 1\end{pmatrix} = \begin{pmatrix}z & 1 \\ 8 & -5\end{pmatrix}$
$\begin{pmatrix}2 & -y \\ -4x & -5\end{pmatrix} = \begin{pmatrix}z & 1 \\ 8 & -5\end{pmatrix}$
Berdasarkan prinsip persamaan matriks:
$2 = z$

$-y = 1$
$y = -1$

$-4x = 8$
$x = -2$

$2x + y + z = 2.(-2) + (-1) + 2$
$= -4 - 1 + 2$
$= -3$
$Jawab:\ B.$

$10.$ Diketahu persamaan matriks
$3\begin{pmatrix}-4 & 2 \\ 10 & 3\end{pmatrix} + 2\begin{pmatrix}1 & -4 \\ -3 & -1\end{pmatrix}$ $ = \begin{pmatrix}1 & x \\ 2 & 5\end{pmatrix}\begin{pmatrix}2 & y \\ 4 & 1\end{pmatrix}$
$Nilai\ 2y - 3x =$ . . . .
$A.\ -9$
$B.\ -7$
$C.\ -4$
$D.\ 8$
$E.\ 11$
[Soal UNBK Matematika IPA 2016]

$\begin{pmatrix}-12 & 6 \\ 30 & 9\end{pmatrix} + \begin{pmatrix}2 & -8 \\ -6 & -2\end{pmatrix}$ $ = \begin{pmatrix}4x + 2 & x + y \\ 24 & 2y + 5\end{pmatrix}$

$\begin{pmatrix}-10 & -2 \\ 24 & 7\end{pmatrix} =\begin{pmatrix}4x + 2 & x + y \\ 24 & 2y + 5\end{pmatrix}$

$Ingat\ persamaan\ matriks\ !$
$-10 = 4x + 2$
$-12 = 4x$
$x = -3$

$7 = 2y + 5$
$7 - 5 = 2y$
$2 = 2y$
$y = 1$

$2y - 3x = 2.1 - 3(-3) = 2 + 9 = 11$
$Jawab:\ E.$

$11.$ Diketahui matriks $A = \begin{pmatrix}1 & 2 \\ 1 & 3\end{pmatrix}$ dan $B = \begin{pmatrix}4 & 1 \\ 1 & 3\end{pmatrix}$.
Matriks $C$ berordo $2\ \times\ 2$ memenuhi $AC = B$, determinan
matriks $C$ adalah . . . .
$A.\ 12$
$B.\ 11$
$C.\ 9$
$D.\ 6$
$E.\ 1$
[Soal UNBK Matematika IPA 2016]

$Ingat\ !$
$Jika\ AX = B\ maka\ X = A^{-1}B$
$AC = B$
$C = A^{-1}B$
$C = \dfrac{1}{1.3 - 2.1}\begin{pmatrix}3 & -2 \\ -1 & 1\end{pmatrix}\begin{pmatrix}4 & 1 \\ 1 & 3\end{pmatrix}$
$= \begin{pmatrix}3 & -2 \\ -1 & 1\end{pmatrix}\begin{pmatrix}4 & 1 \\ 1 & 3\end{pmatrix}$
$= \begin{pmatrix}10 & -3 \\ -3 & 2\end{pmatrix}$
$det.C = |C| = 10.2 - (-3).(-3)$ $ = 20 - 9 = 11$
$Jawab:\ B.$

$12.$ Diketahui matriks $A = \begin{pmatrix}1 & a \\ 2 & -1\end{pmatrix}$, $B = \begin{pmatrix}3 & b \\ a + b & 1\end{pmatrix}$
dan $C = \begin{pmatrix}-1 & 3 \\ 8 & -3\end{pmatrix}$. Jika $2A - B = C^T$ dimana $C^T$ adalah transpose dari matriks C, nilai $a + b =$ . . . .
$A.\ 1$
$B.\ 2$
$C.\ 3$
$D.\ 4$
$E.\ 5$
[Soal UNBK Matematika IPS 2016]

$2A - B = C^T$
$2\begin{pmatrix}1 & a \\ 2 & -1\end{pmatrix} - \begin{pmatrix}3 & b \\ a + b & 1\end{pmatrix} = \begin{pmatrix}-1 & 8 \\ 3 & -3\end{pmatrix}$
$\begin{pmatrix}2 & 2a \\ 4 & -2\end{pmatrix} -\begin{pmatrix}3 & b \\ a + b & 1\end{pmatrix} = \begin{pmatrix}-1 & 8 \\ 3 & -3\end{pmatrix}$
$\begin{pmatrix}-1 & 2a - b \\-a - b + 4 & -3\end{pmatrix} = \begin{pmatrix}-1 & 8 \\ 3 & -3\end{pmatrix}$

Persamaan matriks
$2a - b = 8$ . . . . *
$-a - b + 4 = 3$
$-a - b = -1$
$a + b = 1$ . . . . **
Eliminasi persamaan * dan **
$2a - b = 8$
$a + b = 1$
------------------ +
$3a = 9$
$a = 3$
$b = -2$
$a + b = 3 + (-2) = 1$
$Jawab:\ A.$

$13.$ Diketahui matriks $A = \begin{pmatrix}2 & 3 \\ -1 & 1\end{pmatrix}$, $B = \begin{pmatrix}-3 & -1 \\ 4 & 2\end{pmatrix},$
dan $X = (AB)$. Invers matriks $X$ adalah . . . .
$A.\ \dfrac{1}{10}\begin{pmatrix}-6 & 4 \\ 7 & -3\end{pmatrix}$
$B.\ \dfrac{1}{10}\begin{pmatrix}-3 & 4 \\ 7 & -6\end{pmatrix}$
$C.\ \dfrac{1}{10}\begin{pmatrix}3 & -4 \\ 7 & 6\end{pmatrix}$
$D.\ -\dfrac{1}{10}\begin{pmatrix}-3 & 7 \\ 4 & -6\end{pmatrix}$
$E.\ -\dfrac{1}{10}\begin{pmatrix}-6 & 7 \\ 4 & -3\end{pmatrix}$
[Soal UNBK Matematika IPS 2016]

$X = AB$
$X = \begin{pmatrix}2 & 3 \\ -1 & 1\end{pmatrix}\begin{pmatrix}-3 & -1 \\ 4 & 2\end{pmatrix}$
$= \begin{pmatrix}6 & 4 \\ 7 & 3\end{pmatrix}$
$X^{-1} = \dfrac{1}{6.3 - 4.7}\begin{pmatrix}3 & -4 \\ -7 & 6\end{pmatrix}$
$= -\dfrac{1}{10}\begin{pmatrix}3 & -4 \\ -7 & 6\end{pmatrix}$
$= \dfrac{1}{10}\begin{pmatrix}-3 & 4 \\ 7 & -6\end{pmatrix}$
$Jawab:\ B.$

$14.$ Jika $A = \begin{bmatrix}2 & 1 \\0 & 4\end{bmatrix}$ dan $B = \begin{bmatrix}-3 \\ -6\end{bmatrix}$ $maka\ A^6B =$ . . . .
$A.\ 2^6B$
$B.\ 2^{12}B$
$C.\ 4^6$
$D.\ 4^7B$
$E.\ 2^{14}$
[Soal SIMAK UI 2011 Matdas]

$AB = \begin{bmatrix}2 & 1 \\0 & 4\end{bmatrix}\begin{bmatrix}-3 \\ -6\end{bmatrix}$
$= \begin{bmatrix}-12 \\ -24\end{bmatrix}$
$= 4\begin{bmatrix}-3 \\ -6\end{bmatrix}$
$A = 4 → A^6 = 4^6 = \left(2^2 \right)^6 = 2^{12}$
$Sehingga\ A^6B = 2^{12}B$
$Jawab:\ B.$

$15.$ Jika det $\begin{bmatrix}x & -1 \\ \dfrac{1}{x^2} & x\end{bmatrix} = 2$, maka det $\begin{bmatrix}x & -1 \\ \dfrac{1}{x} & 1\end{bmatrix} =$ . . . .
$(1)\ -2$
$(2)\ -1$
$(3)\ 2$
$(4)\ 1$
[Soal SIMAK UI 2011 Matdas]

$det\ \begin{bmatrix}x & -1 \\ \dfrac{1}{x^2} & x\end{bmatrix} = 2$
$x^2 + \dfrac{1}{x^2} = 2$
$x^4 + 1 = 2x^2\ →\ semua\ dikali\ x^2$
$x^4 - 2x^2 + 1 = 0$
$\left(x^2 - 1 \right)^2 = 0$
$x^2 - 1 = 0$
$(x + 1)(x - 1) = 0$
$x = -1\ atau\ x = 1$

$det\ \begin{bmatrix}x & -1 \\ \dfrac{1}{x} & 1\end{bmatrix} = x + \dfrac1x$
$Jika\ x = 1 → det = 1 + \dfrac11 = 2$
$Jika\ x = -1 → det = -1 + \dfrac{1}{-1} = -2$
Opsi yang benar adalah opsi 1 dan 3
$Jawab:\ B.$

$16.$ Diketahui $A = \begin{pmatrix}2 & ^zlog\ b \\ ^alog\ \dfrac1z & 1\end{pmatrix}$ merupakan matriks singular. Maka $^alog\ b^3a + ^zlog\ a.^blog\ z^2 =$ . . . .
$A.\ -10$
$B.\ -6$
$C.\ 0$
$D.\ 6$
$E.\ 10$
[Soal SIMAK UI 2012 Matdas]

Matriks singular adalah matriks yang determinannya = 0
$2.1 - \displaystyle ^zlog\ b.^alog\ \dfrac1z = 0$
$\displaystyle 2 - \dfrac{log\ b}{log\ z}.\dfrac{log\ z^{-1}}{log\ a} = 0$
$\displaystyle 2 - (-1).\dfrac{log\ b}{log\ z}.\dfrac{log\ z}{log\ a} = 0$
$2 + \dfrac{log\ b}{log\ z}.\dfrac{log\ z}{log\ a} = 0$
$\dfrac{log\ b}{log\ a} = -2$
$^alog\ b = -2$
$b = a^{-2}$ . . . . *

$^alog\ b^3a +\ ^zlog\ a.^blog\ z^2$
$= \displaystyle ^alog\ \left(a^{-2}\right)^3.a + 2.\dfrac{log\ a}{log\ z}\dfrac{log\ z}{log\ b}$
$=\ ^alog\ a^{-5} +\ 2.^blog\ a$
$= -5.^alog\ a + 2.^{\displaystyle a^{-2}}log\ a$
$= -5.^alog\ a + \dfrac{2}{-2}.^alog\ a$
$= -5 + (-1)$
$= -6$
$Jawab:\ B$

$17.$ Jika A adalah invers dari matriks $\dfrac13\begin{bmatrix}-1 & -3 \\ 4 & 5\end{bmatrix},$ maka $A\begin{bmatrix}x \\ y\end{bmatrix} = \begin{bmatrix}1 \\ 3\end{bmatrix}$ akan menghasilkan nilai $x$ dan $y$ yang memenuhi $2x + y =$ . . . .
$A.\ -\dfrac{10}{3}$
$B.\ -\dfrac{1}{3}$
$C.\ 1$
$D.\ \dfrac97$
$E.\ \dfrac{20}{3}$
[Soal SIMAK UI 2014 Matdas]

$A\begin{bmatrix}x \\ y\end{bmatrix} = \begin{bmatrix}1 \\ 3\end{bmatrix}$
$\begin{bmatrix}x \\ y\end{bmatrix} = A^{-1}\begin{bmatrix}1 \\ 3\end{bmatrix}$
$Ingat\ !$
$Jika\ A = B^{-1}\ maka\ A^{-1} = B$
$\begin{bmatrix}x \\ y\end{bmatrix} = \dfrac13\begin{bmatrix}-1 & -3 \\ 4 & 5\end{bmatrix}\begin{bmatrix}1 \\ 3\end{bmatrix}$
$\begin{bmatrix}x \\ y\end{bmatrix} = \dfrac13\begin{bmatrix}-10 \\ 19\end{bmatrix}$
$x = -\dfrac{10}{3}$
$y = \dfrac{19}{3}$
$2x + y = 2.\dfrac{-10}{3} + \dfrac{19}{3}$
$= -\dfrac{1}{3}$
$Jawab:\ B.$

$18.$ Diketahui matriks $A = \begin{bmatrix}2 & -2 \\ 2 & 2\end{bmatrix}$ dan B adalah matriks dengan entri-entri bernilai real sedemikian sehingga $AB = BA.$ Nilai terkecil untuk determinan $B$ adalah . . . .
$A.\ -2$
$B.\ -1$
$C.\ 0$
$D.\ 1$
$E.\ 2$
[Soal SIMAK UI 2015 Matdas]

$AB = BA$
Misalkan matriks $B = \begin{bmatrix}a & b \\ c & d\end{bmatrix}$
$\begin{bmatrix}2 & -2 \\ 2 & 2\end{bmatrix}\begin{bmatrix}a & b \\ c & d\end{bmatrix} = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\begin{bmatrix}2 & -2 \\ 2 & 2\end{bmatrix}$
$\begin{bmatrix}2a - 2c & 2b - 2d \\ 2a + 2c & 2b + 2d\end{bmatrix} = \begin{bmatrix}2a + 2b & -2a + 2b \\ 2c + 2d & -2c + 2d\end{bmatrix}$
Persamaan matriks
$2a - 2c = 2a + 2b$
$b = -c$
$2a + 2c = 2c + 2d$
$a = d$
$|B| = ad - bc$
$= a^2 - (-c)(c)$
$= a^2 + c^2$
Karena entri-entri dari $B$ adalah bilangan real maka nilai terkecil dari $|B|$ adalah nol.
$Jawab:\ C.$

$19.$ Diketahui $A = \begin{bmatrix}a & -3 \\ 1 & d\end{bmatrix}$. Jika $A = A^{-1}$, maka nilai $|a - d|$
adalah . . . .
$A.\ 0$
$B.\ 1$
$C.\ 2$
$D.\ 3$
$E.\ 4$
[Soal SIMAK UI 2018 Matdas]

$A = A^{-1}$
$\begin{bmatrix}a & -3 \\ 1 & d\end{bmatrix} = \dfrac{1}{ad + 3}\begin{bmatrix}d & 3 \\ -1 & a\end{bmatrix}$
Persamaan matriks
$1 = \dfrac{-1}{ad + 3}$
$ad = -4$ . . . . *
$a = \dfrac{d}{ad + 3}$ . . . . **
Substitusikan pers * ke pers **
$a = \dfrac{d}{-4 + 3}$
$-a = d$ . . . . ***
Substitusikan pers *** ke pers *
$a(-a) = -4$
$-a^2 = -4$
$a^2 = 4$
$a = \pm 2$
$a = 2 → d = -2$
$|a - d| = |2 - (-2)| = |4| = 4$
$a = -2 → d = 2$
$|a - d| = |-2 - 2| = |-4| = 4$
$Jawab:\ E.$

$20.$ Misalkan $A^T$ adalah transpose matriks $A$. Jika $A = \begin{pmatrix}1 & -2 \\ 0 & a\end{pmatrix}$
dan $B = \begin{pmatrix}3 & 0 \\ 1 & 2\end{pmatrix}$ sehingga $A^TB = \begin{pmatrix}3 & 0 \\ -4 & 4\end{pmatrix},$
$maka\ a^2 - b^2 =$ . . . .
$A.\ 0$
$B.\ 2$
$C.\ 6$
$D.\ 12$
$E.\ 20$
[Soal SBMPTN 2017 Matdas]

$A^TB = \begin{pmatrix}3 & 0 \\ -4 & 4\end{pmatrix}$
$\begin{pmatrix}1 & 0 \\ -2 & a\end{pmatrix}\begin{pmatrix}3 & 0 \\ 1 & 2\end{pmatrix} = \begin{pmatrix}3 & 0 \\ -4 & 4\end{pmatrix}$
$\begin{pmatrix}3 & 0 \\ a - 6 & 2a\end{pmatrix} = \begin{pmatrix}3 & 0 \\ -4 & 4\end{pmatrix}$
$2a = 4$
$a = 2$
$a^2 - a = 2^2 - 2$
$4 - 2 = 2.$
$Jawab:\ B.$

$21.$ Diketahui matriks $A = \begin{pmatrix}8 & a \\ a & 1\end{pmatrix}$, $B = \begin{pmatrix}1 & -1 \\b & 1\end{pmatrix},$ dan $C$ adalah matriks berukuran $2\ \times\ 2$ yang mempunyai invers. Jika $AC$ dan $BC$ tidak memiliki invers, maka $3a^2 + 4b^3 =$ . . . .
$A.\ 16$
$B.\ 20$
$C.\ 24$
$D.\ 28$
$E.\ 36$
[Soal SBMPTN 2016 Matdas]

Matriks $C$ memiliki invers berarti $C$ memiliki determinan
$AC$ tidak memiliki invers → $|AC| = 0$
$|AC| = 0$
$|A||C| = 0$
Karena $C$ memiliki determinan berarti $|A| = 0$
$8 - a^2 = 0$
$a^2 = 8$
$BC$ tidak memiliki invers → $|BC| = 0$
$|BC| = 0$
$|B||C| = 0$
Karena $C$ memiliki determinan berarti $|B| = 0$
$1 - (-b) = 0$
$1 + b = 0$
$b = -1$

$3a^2 + 4b^3 = 3.8 + 4.(-1)^3$
$= 24 - 4$
$= 20$
$Jawab:\ B.$

$22.$ Jika $\begin{pmatrix}1 & 1 \\ 2 & 1\end{pmatrix}P\begin{pmatrix}0 \\ 1\end{pmatrix} = \begin{pmatrix}1 \\ 2\end{pmatrix}$ dan $\begin{pmatrix}1 & 1 \\ 2 & 1\end{pmatrix}P\begin{pmatrix}1 \\ 1\end{pmatrix} = \begin{pmatrix}2 \\ 1\end{pmatrix}$, maka $det\ P =$ . . . .
$A.\ -3$
$B.\ -2$
$C.\ 1$
$D.\ 2$
$A.\ 3$
[Soal SBMPTN 2016 Matdas]

$Ingat\ !$
$Jika\ AX = B\ maka\ A = A^{-1}B$
$\begin{pmatrix}1 & 1 \\ 2 & 1\end{pmatrix}P\begin{pmatrix}0 \\ 1\end{pmatrix} = \begin{pmatrix}1 \\ 2\end{pmatrix}$
$P\begin{pmatrix}0 \\ 1\end{pmatrix} = -1\begin{pmatrix}1 & -1 \\ -2 & 1\end{pmatrix}\begin{pmatrix}1 \\ 2\end{pmatrix}$
$P\begin{pmatrix}0 \\ 1\end{pmatrix} = \begin{pmatrix}-1 & 1 \\ 2 & -1\end{pmatrix}\begin{pmatrix}1 \\ 2\end{pmatrix}$
$P\begin{pmatrix}0 \\ 1\end{pmatrix} = \begin{pmatrix}1 \\ 0\end{pmatrix}$
$Misalkan\ P = \begin{pmatrix}a & b \\ c & d\end{pmatrix}$
$\begin{pmatrix}a & b \\ c & d\end{pmatrix}\begin{pmatrix}0 \\ 1\end{pmatrix} = \begin{pmatrix}1 \\ 0\end{pmatrix}$
$b = 1$
$d = 0$

$\begin{pmatrix}1 & 1 \\ 2 & 1\end{pmatrix}P\begin{pmatrix}1 \\ 1\end{pmatrix} = \begin{pmatrix}2 \\ 1\end{pmatrix}$
$P\begin{pmatrix}1 \\ 1\end{pmatrix} = -1\begin{pmatrix}1 & -1 \\ -2 & 1\end{pmatrix}\begin{pmatrix}2 \\ 1\end{pmatrix}$
$P\begin{pmatrix}1 \\ 1\end{pmatrix} = \begin{pmatrix}-1 & 1 \\ 2 & -1\end{pmatrix}\begin{pmatrix}2 \\ 1\end{pmatrix}$
$P\begin{pmatrix}1 \\ 1\end{pmatrix} = \begin{pmatrix}-1 \\ 3\end{pmatrix}$
$\begin{pmatrix}a & b \\ c & d\end{pmatrix}\begin{pmatrix}1 \\ 1\end{pmatrix} = \begin{pmatrix}-1 \\ 3\end{pmatrix}$
$a + b = -1$
$a + 1 = -1$
$a = -2$

$c + d = 3$
$c + 0 = 3$
$c = 3$
$|P| = ad - bc$
$= (-2).0 - 1.3$
$= -3$
$Jawab:\ A.$

$23.$ Jika $A = \begin{bmatrix}2 & 1 \\ a & 4\end{bmatrix}$ merupakan matriks yang mempunyai invers dan $det(B) = 4$, maka hasil kali semua nilai a yang mungkin sehingga $det(A) = 16det\left((AB)^{-1}\right)$ adalah . . . .
$A.\ 6$
$B.\ 10$
$C.\ 20$
$D.\ 30$
$E.\ 60$
[Soal SBMPTN 2015 Matdas]

$det(A) = 8 - a$
$det(B) = 4$
$det(A) = 16det\left((AB)^{-1}\right)$
$det(A) = 16\left(\dfrac{1}{det(AB)}\right)$
$det(A) = 16\left(\dfrac{1}{det(A)det(B)}\right)$
$(8 - a) = 16\left(\dfrac{1}{(8 - a).4}\right)$
$(8 - a) = 4\left(\dfrac{1}{(8 - a)}\right)$
$(8 - a)^2 = 4$
$a^2 - 16a + 64 = 4$
$a^2 - 16a + 60 = 0$
Ingat perkalian akar-akar persamaan kuadrat !
$x_1.x_2 = \dfrac{c}{a}$
$a_1.a_2 = \dfrac{60}{1} = 60$
$Jawab:\ E.$

$24.$ Jika $P = \begin{pmatrix}1 & 2 \\ 1 & 3\end{pmatrix}$ dan $\begin{pmatrix}x & y \\ -z & z\end{pmatrix} = 2P^{-1},$ Dengan $P^{-1}$ menyatakan invers matriks $P$, maka $x + y =$ . . . .
$A.\ 0$
$B.\ 1$
$C.\ 2$
$D.\ 3$
$E.\ 4$
[Soal SBMPTN 2014 Matdas]

$\begin{pmatrix}x & y \\ -z & z\end{pmatrix} = 2.\dfrac{1}{1.3 - 2.1}\begin{pmatrix}3 & -2 \\ -1 & 1\end{pmatrix}$
$\begin{pmatrix}x & y \\ -z & z\end{pmatrix} = \begin{pmatrix}6 & -4 \\ -2 & 2\end{pmatrix}$
$x = 6$
$y = -4$
$x + y = 6 + (-4) = 2$
$Jawab:\ C.$

$25.$ Jika $A = \begin{pmatrix}1 & 1 & -1 \\ 0 & -1 & 1\end{pmatrix}$, $B = \begin{pmatrix}a & 3 \\ b & 2\\c & 2 \end{pmatrix}$ dan determinan matriks $AB$ adalah 3, maka nilai $c - b =$ . . . .
$A.\ -2$
$B.\ -1$
$C.\ 0$
$D.\ 1$
$E.\ 2$
[Soal SBMPTN 2013 Matdas]

$AB = \begin{pmatrix}a + b - c & 3 + 2 - 2 \\ 0 - b + c & 0 - 2 + 2\end{pmatrix}$
$AB = \begin{pmatrix}a + b - c & 3 \\ c - b & 0\end{pmatrix}$
$|AB| = (a + b - c).0 - 3(c - b) = 3$
$-3(c - b) = 3$
$-(c - b) = 1$
$c - b = -1$
$Jawab:\ B.$

$26.$ Jika matriks $\begin{pmatrix}^4log2^x & 1 \\ ^2log4^y & x\end{pmatrix}$ tidak mempunyai invers dan $x^2 + y^2 = 32$, maka nilai $^xlogy =$ . . . .
$A.\ 1$
$B.\ 2$
$C.\ 3$
$D.\ 4$
$E.\ 5$
[Soal UM UGM 2018 Matdas]

Karena matriks tidak mempunyai invers, berarti determinan = 0
$(^4log2^x).x - 1.^2log4^y = 0$
$(^{\displaystyle 2^2}log2^x).x =\ ^2log\left(2^2\right)^y$
$(\dfrac{x}{2}.^2log2).x =\ ^2log2^{2y}$
$(\dfrac{x}{2}.^2log2).x = 2y^2log2$
$\dfrac{x^2}{2} = 2y$
$x^2 = 4y$ . . . . *

$x^2 + y^2 = 32$ . . . . **
Substitusikan pers * ke pers **
$4y + y^2 = 32$
$y^2 + 4y - 32 = 0$
$(y + 8)(y - 4) = 0$
$y = -8\ atau\ y = 4$
Karena yang ditanya adalah $^xlogy$, maka y harus $\geq 0$. Ingat syarat numerus logaritma. Berarti $y = -8$ tidak memenuhi syarat (TMS). Dengan demikian $y = 4$
$x^2 = 4y$
$x^2 = 4.4$
$x = \pm\ 4$
Ingat syarat basis logaritma $a > 0\ dan\ a \ne 1$. Berarti $x = -4$ tidak memenuhi syarat. Dengan demikian $x = 4$
$^xlogy =\ ^4log4 = 1$
$Jawab:\ A.$

$27.$ Jika matriks $A = \begin{pmatrix}0 & -1 \\ 1 & -4\end{pmatrix}$ dan $B = \begin{pmatrix}57 & -15 \\ 15 & -3\end{pmatrix}$ serta $A^{-1}$ menyatakan invers matriks $A$, maka $\left(A^{-1}\right)^3 + B =$ . . . .
$A.\ \begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}$
$B.\ \begin{pmatrix}-1 & 0 \\ 0 & -1\end{pmatrix}$
$C.\ \begin{pmatrix}61 & 0 \\ 0 & -59\end{pmatrix}$
$D.\ \begin{pmatrix}61 & -30 \\ 30 & -59\end{pmatrix}$
$E.\ \begin{pmatrix}1 & 2 \\ 2 & 1\end{pmatrix}$
[Soal UM UGM 2016 Matdas]

$A^{-1} = \dfrac{1}{0.(-4) - (-1).1}\begin{pmatrix}-4 & 1 \\ -1 & 0\end{pmatrix}$
$A^{-1} = \begin{pmatrix}-4 & 1 \\ -1 & 0\end{pmatrix}$
$\left(A^{-1}\right)^3 = A^{-1}.A^{-1}.A^{-1}$
$= \begin{pmatrix}-4 & 1 \\ -1 & 0\end{pmatrix}\begin{pmatrix}-4 & 1 \\ -1 & 0\end{pmatrix}\begin{pmatrix}-4 & 1 \\ -1 & 0\end{pmatrix}$
$= \begin{pmatrix}15 & -4 \\ 4 & -1\end{pmatrix}\begin{pmatrix}-4 & 1 \\ -1 & 0\end{pmatrix}$
$= \begin{pmatrix}-56 & 15 \\ -15 & 4\end{pmatrix}$

$\left(A^{-1}\right)^3 + B = \begin{pmatrix}-56 & 15 \\ -15 & 4\end{pmatrix} + \begin{pmatrix}57 & -15 \\ 15 & -3\end{pmatrix}$
$= \begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}$
$Jawab:\ A.$

$28.$ Jika $A = \begin{pmatrix}2 & 1 \\ 1 & 1\end{pmatrix}$, $B = \begin{pmatrix}1 & 1 \\ 1 & 1\end{pmatrix},$ dan $I$ adalah matriks identitas, maka determinan matriks $X$ yang memenuhi $AX + 2B = I$ adalah . . . .
$A.\ -3$
$B.\ -2$
$C.\ -1$
$D.\ 0$
$E.\ 4$
[Soal UM UGM 2017 Matdas]

$\begin{pmatrix}2 & 1 \\ 1 & 1\end{pmatrix}X + 2\begin{pmatrix}1 & 1 \\ 1 & 1\end{pmatrix} = \begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}$
$\begin{pmatrix}2 & 1 \\ 1 & 1\end{pmatrix}X = \begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix} - 2\begin{pmatrix}1 & 1 \\ 1 & 1\end{pmatrix}$
$\begin{pmatrix}2 & 1 \\ 1 & 1\end{pmatrix}X = \begin{pmatrix}-1 & -2 \\ -2 & -1\end{pmatrix}$
$Ingat\ !$
$Jika\ AX = B\ maka\ X = A^{-1}B$
$X = \dfrac{1}{(2 - 1)}\begin{pmatrix}1 & -1 \\ -1 & 2\end{pmatrix}\begin{pmatrix}-1 & -2 \\ -2 & -1\end{pmatrix}$
$X = \begin{pmatrix}1 & -1 \\ -1 & 2\end{pmatrix}\begin{pmatrix}-1 & -2 \\ -2 & -1\end{pmatrix}$
$= \begin{pmatrix}1 & -1 \\ -3 & 0\end{pmatrix}$
$|X| = 1.0 - (-1).(-3) = -3$
$Jawab:\ A.$

$29.$ Diberikan matriks $P = \begin{pmatrix}2 & -1 \\ 4 & 3\end{pmatrix}$ dan $Q = \begin{pmatrix}2r & 1 \\ r & p + 1\end{pmatrix}$ dengan $r \ne 0\ dan\ p \ne 0$ Matriks $PQ$ tidak mempunyai invers apabila nilai $p =$ . . . .
$A.\ -\dfrac32$
$B.\ -\dfrac12$
$A.\ -\dfrac14$
$A.\ \dfrac12$
$A.\ \dfrac87$
[Soal UM UGM 2015 Matdas]

$PQ = \begin{pmatrix}2 & -1 \\ 4 & 3\end{pmatrix}\begin{pmatrix}2r & 1 \\ r & p + 1\end{pmatrix}$ $ = \begin{pmatrix}3r & 1 - p \\ 11r & 3p + 7\end{pmatrix}$
$PQ$ tidak mempunyai invers berarti $|PQ| = 0$
$3r(3p + 7) = 11r(1 - p)$
$9p + 21 = 11 - 11p$
$9p + 11p = 11 - 21$
$20p = -10$
$p = -\dfrac12$
$Jawab:\ B.$

$30.$ Diketahui matriks $A = \begin{bmatrix}1 & -2 \\ 2 & 5\end{bmatrix}$. Nilai $k$ yang memenuhi $k.det(A^T) = det(A^{-1})$ adalah . . . .
$A.\ 81$
$B.\ 9$
$C.\ 1$
$D.\ \dfrac19$
$E.\ \dfrac{1}{81}$
[Soal SIMAK UI 2010 Matdas]

$A = \begin{bmatrix}1 & -2 \\ 2 & 5\end{bmatrix}$
$A^{-1} = \dfrac{1}{(5 - (-4))}\begin{bmatrix}5 & 2 \\ -2 & 1\end{bmatrix}$ $ = \begin{bmatrix}\dfrac59 & \dfrac29 \\ -\dfrac29 & \dfrac19\end{bmatrix}$
$det(A^{-1}) = \dfrac59.\dfrac19 + \dfrac29.\dfrac29 = \dfrac19$

$A^T = \begin{bmatrix}1 & 2 \\ -2 & 5\end{bmatrix}$
$det(A^T) = 1.5 + 2.2 = 9$

$k.det(A^T) = det(A^{-1})$
$k.9 = \dfrac19$
$k = \dfrac{1}{81}$
$Jawab:\ E.$

Demikianlah soal dan pembahasan matriks, semoga bermanfaat. Selamat belajar !

Disusun oleh:
Joslin Sibarani
Alumni Teknik Sipil ITB

SHARE THIS POST


Artikel Terkait:
1. Pengertian Matriks, Ordo dan Notasi Matriks
2. Perkalian dan Perpangkatan Matriks
3. Determinan dan Invers Matriks
4. Menjumlahkan dan Mengurangkan Matriks

www.maretong.com



No comments:

Post a Comment

Jika ada saran dan kritik yang sifatnya membangun atau ada koreksi silahkan tuliskan di kolom komentar.